Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rice (N Y) ; 17(1): 4, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38185771

RESUMEN

Rice chalkiness is a key limiting factor of high-quality rice. The breeding of low chalkiness varieties has always been a challenging task due to the complexity of chalkiness and its susceptibility to environmental factors. In previous studies, we identified six QTLs for the percentage of grain chalkiness (PGC), named qPGC5, qPGC6, qPGC8.1, qPGC8.2, qPGC9 and qPGC11, using single-segment substitution lines (SSSLs) with genetic background of Huajingxian 74 (HJX74). In this study, we utilized the six low chalkiness QTLs to develop 17 pyramiding lines with 2-4 QTLs. The results showed that the PGC decreased with the increase of QTLs in the pyramiding lines. The pyramiding lines with 4 QTLs significantly reduced the chalkiness of rice and reached the best quality level. Among the six QTLs, qPGC5 and qPGC6 showed greater additive effects and were classified as Group A, while the other four QTLs showed smaller additive effects and were classified as Group B. In pyramiding lines, although the presence of epistasis, additivity remained the main component of QTL effects. qPGC5 and qPGC6 showed stronger ability to reduce rice chalkiness, particularly in the environment of high temperature (HT) in the first cropping season (FCS). Our research demonstrates that by pyramiding low chalkiness QTLs, it is feasible to develop the high-quality rice varieties with low chalkiness at the best quality level even in the HT environment of FCS.

2.
Sci Rep ; 14(1): 373, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172169

RESUMEN

If there was no gene interaction, the gene aggregation effect would increase infinitely with the increase of gene number. Epistasis avoids the endless accumulation of gene effects, playing a role of homeostasis. To confirm the role, QTL epistases were analyzed by four single-segment substitution lines with heading date QTLs in this paper. We found that QTLs of three positive effects and one negative effect generated 62.5% negative dual QTL epistatic effects and 57.7% positive triple QTL epistatic effects, forming the relationship "positive QTLs-negative one order interactions-positive two order interactions". In this way, the aggregation effect of QTLs was partially neutralized by the opposite epistatic effect sum. There also were two exceptions, QTL OsMADS50 and gene Hd3a-2 were always with consistent effect directions with their epistases, implying they could be employed in pyramiding breeding with different objectives. This study elucidated the mechanism of epistatic interactions among four QTLs and provided valuable genetic resources for improving heading date in rice.


Asunto(s)
Oryza , Mapeo Cromosómico , Oryza/genética , Fenotipo , Epistasis Genética , Cromosomas de las Plantas , Fitomejoramiento , Homeostasis/genética
3.
Theor Appl Genet ; 136(11): 225, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847396

RESUMEN

KEY MESSAGE: A novel QTL qGLF5 from Oryza rufipogon Griff. improves yield per plant and plant architecture in rice. Kernel size and plant architecture are critical agronomic traits that are key targets for improving crop yield. From the single-segment substitution lines of Oryza rufipogon Griff. in the indica cultivar Huajingxian74 (HJX74) background, we identified a novel quantitative trait locus (QTL), named qGLF5, which improves kernel shape, plant architecture, and yield per plant in rice. Compared with the control HJX74, the plant height, panicles per plant, panicle length, primary branches per panicle, secondary branches per panicle, and kernels per plant of the near-isogenic line-qGLF5 (NIL-qGLF5) are significantly increased. NIL-qGLF5 has long and narrow kernels by regulating cell number, cell length and width in the spikelet hulls. Yield per plant of NIL-qGLF5 is increased by 35.02% compared with that of HJX74. In addition, qGLF5 significantly improves yield per plant and plant architecture of NIL-gw5 and NIL-GW7. These results indicate that qGLF5 might be beneficial for improving plant architecture and kernel yield in rice breeding by molecular design.


Asunto(s)
Oryza , Mapeo Cromosómico , Oryza/genética , Genes de Plantas , Fitomejoramiento , Sitios de Carácter Cuantitativo
4.
Yi Chuan ; 45(9): 835-844, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37731237

RESUMEN

Kernel size and plant architecture play important roles in kernel yield in rice. Cloning and functional study of genes related to kernel size and plant architecture are of great significance for breeding high-yield rice. Using the single-segment substitution lines which developed with Oryza barthii as a donor parent and an elite indica cultivar Huajingxian74 (HJX74) as a recipient parent, we identified a novel QTL (quantitative trait locus), named qGL3.4, which controls kernel size and plant architecture. Compared with HJX74, the kernel length, kernel width, 1000-kernel weight, panicle length, kernels per plant, primary branches, yield per plant, and plant height of near isogenic line-qGL3.4 (NIL-qGL3.4) are increased, whereas the panicles per plant and secondary branches per panicle of NIL-qGL3.4 are comparable to those of HJX74. qGL3.4 was narrowed to a 239.18 kb interval on chromosome 3. Cell analysis showed that NIL-qGL3.4 controlled kernel size by regulating cell growth. qGL3.4 controls kernel size at least in part through regulating the transcription levels of EXPANSINS, GS3, GL3.1, PGL1, GL7, OsSPL13 and GS5. These results indicate that qGL3.4 might be beneficial for improving kernel yield and plant architecture in rice breeding.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Ciclo Celular , Proliferación Celular , Sitios de Carácter Cuantitativo
5.
Nat Plants ; 9(8): 1318-1332, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550368

RESUMEN

Organ growth is controlled by both intrinsic genetic factors and external environmental signals. However, the molecular mechanisms that coordinate plant organ growth and nutrient supply remain largely unknown. We have previously reported that the B3 domain transcriptional repressor SOD7 (NGAL2) and its closest homologue DPA4 (NGAL3) act redundantly to limit organ and seed growth in Arabidopsis. Here we report that SOD7 represses the interaction between the transcriptional coactivator GRF-INTERACTING FACTOR 1 (GIF1) and growth-regulating factors (GRFs) by competitively interacting with GIF1, thereby limiting organ and seed growth. We further reveal that GIF1 physically interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), which acts as a central regulator of iron uptake and homeostasis. SOD7 can competitively repress the interaction of GIF1 with FIT to influence iron uptake and responses. The sod7-2 dpa4-3 mutant enhances the expression of genes involved in iron uptake and displays high iron accumulation. Genetic analyses support that GIF1 functions downstream of SOD7 to regulate organ and seed growth as well as iron uptake and responses. Thus, our findings define a previously unrecognized mechanism that the SOD7/DPA4-GIF1 module coordinates organ growth and iron uptake by targeting key regulators of growth and iron uptake.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Transporte Biológico , Desarrollo de la Planta , Regulación de la Expresión Génica de las Plantas , Transactivadores/metabolismo
6.
Planta ; 258(2): 42, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37432475

RESUMEN

MAIN CONCLUSION: A novel QTL GS6.1 increases yield per plant by controlling kernel size, plant architecture, and kernel filling in rice. Kernel size and plant architecture are critical agronomic traits that greatly influence kernel yield in rice. Using the single-segment substitution lines (SSSLs) with an indica cultivar Huajingxian74 as a recipient parent and American Jasmine as a donor parent, we identified a novel quantitative trait locus (QTL), named GS6.1. Near isogenic line-GS6.1 (NIL-GS6.1) produces long and narrow kernels by regulating cell length and width in the spikelet hulls, thus increasing the 1000-kernel weight. Compared with the control, the plant height, panicles per plant, panicle length, kernels per plant, secondary branches per panicle, and yield per plant of NIL-GS6.1 are increased. In addition, GS6.1 regulates the kernel filling rate. GS6.1 controls kernel size by modulating the transcription levels of part of EXPANSINs, kernel filling-related genes, and kernel size-related genes. These results indicate that GS6.1 might be beneficial for improving kernel yield and plant architecture in rice breeding by molecular design.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Agricultura , Fenotipo , Sitios de Carácter Cuantitativo/genética
7.
Front Plant Sci ; 14: 1087285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798706

RESUMEN

Stigma exsertion rate (SER) is an index of outcrossing ability in rice and is a key trait of male sterile lines (MSLs) in hybrid rice. In this study, it was found that the maintainer lines carrying gs3 and gs3/gw8 showed higher SER. Single-segment substitution lines (SSSLs) carrying gs3, gw5, GW7 or gw8 genes for grain shape and gene pyramiding lines were used to reveal the relationship between grain shape and SER. The results showed that the grain shape regulatory genes had pleiotropic effects on SER. The SERs were affected by grain shapes including grain length, grain width and the ratio of length to width (RLW) not only in low SER background, but also in high SER background. The coefficients of determination (R2) between grain length and SER, grain width and SER, and grain RLW and SER were 0.78, 0.72, and 0.91 respectively. The grain RLW was the most important parameter affecting SER, and a larger grain RLW was beneficial to stigma exsertion. The pyramiding line PL-gs3/GW7/gw8 showed the largest grain RLW and the highest SER, which will be a fine breeding resource. Further research showed that the grain shape regulatory genes had pleiotropic effects on stigma shape, although the R2 values between grain shape and stigma shape, and stigma shape and SER were lower. Our results demonstrate that grain shape is a factor affecting SER in rice, in part by affecting stigma shape. This finding will be helpful for breeding MSLs with high SER in hybrid rice.

8.
Front Plant Sci ; 13: 957863, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845647

RESUMEN

Chalkiness is a crucial determinant of rice quality. During seed filling period, high temperature usually increases grain chalkiness, resulting in poor grain quality. Rice chalkiness was controlled by quantitative trait loci (QTLs) and influenced by environmental conditions. In this study, we identified two single-segment substitution lines (SSSLs) 22-05 and 15-06 with significantly lower percentage of grain chalkiness (PGC) than recipient Huajingxian 74 (HJX74) over 6 cropping seasons. Two major QTLs for chalkiness, qPGC5 and qPGC6, were located by substitution mapping of SSSLs 22-05 and 15-06, respectively. qPGC5 was located in the 876.5 kb interval of chromosome 5 and qPGC6 was located in the 269.1 kb interval of chromosome 6. Interestingly, the PGC of HJX74 was significantly different between the two cropping seasons per year, with 25.8% in the first cropping season (FCS) and 16.6% in the second cropping season (SCS), while the PGC of SSSLs 22-05 and 15-06 did not significantly differ between FCS and SCS. The additive effects of qPGC5 and qPGC6 on chalkiness in the SSSLs were significantly greater in FCS than in SCS. These results showed that qPGC5 and qPGC6 had major effects on chalkiness and the SSSL alleles were more effective in reducing chalkiness under high temperature condition in FCS. The fine-mapping of the two QTLs will facilitate the cloning of genes for chalkiness and provide new genetic resources to develop new cultivars with low chalkiness even under high temperature condition.

9.
Front Plant Sci ; 13: 921700, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35747883

RESUMEN

Asian cultivated rice is a self-pollinating crop, which has already lost some traits of natural outcrossing in the process of domestication. However, male sterility lines (MSLs) need to have a strong outcrossing ability to produce hybrid seeds by outcrossing with restorer lines of male parents in hybrid rice seed production. Stigma exsertion rate (SER) is a trait related to outcrossing ability. Reconstruction of the high-SER trait is essential in the MSL breeding of rice. In previous studies, we detected eighteen quantitative trait loci (QTLs) for SER from Oryza sativa, Oryza glaberrima, and Oryza glumaepatula using single-segment substitution lines (SSSLs) in the genetic background of Huajingxian 74 (HJX74). In this study, eleven of the QTLs were used to develop pyramiding lines. A total of 29 pyramiding lines with 2-6 QTLs were developed from 10 SSSLs carrying QTLs for SER in the HJX74 genetic background. The results showed that the SER increased with increasing QTLs in the pyramiding lines. The SER in the lines with 5-6 QTLs was as high as wild rice with strong outcrossing ability. The epistasis of additive by additive interaction between QTLs in the pyramiding lines was less-than-additive or negative effect. One QTL, qSER3a-sat, showed minor-effect epistasis and increased higher SER than other QTLs in pyramiding lines. The detection of epistasis of QTLs on SER uncovered the genetic architecture of SER, which provides a basis for using these QTLs to improve SER levels in MSL breeding. The reconstruction of the high-SER trait will help to develop the MSLs with strong outcrossing ability in rice.

10.
Plant Physiol ; 190(1): 516-531, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35689635

RESUMEN

The EPIDERMAL PATTERNING FACTOR (EPF) and EPF-LIKE (EPFL) family of small secreted peptides act to regulate many aspects of plant growth and development; however, their functions are not widely characterized in rice (Oryza sativa). Here, we used clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) technology to individually knockout each of 11 EPF/EPFL genes in the rice cultivar Kasalath. Loss of function of most OsEPF/EPFL genes generated no obvious phenotype alteration, while disruption of OsEPFL2 in Kasalath caused a short or no awn phenotype and reduced grain size. OsEPFL2 is strongly expressed in the young panicle, consistent with a role in regulating awn and grain development. Haplotype analysis indicated that OsEPFL2 can be classified into six major haplotypes. Nucleotide diversity and genetic differentiation analyses suggested that OsEPFL2 was positively selected during the domestication of rice. Our work to systematically investigate the function of EPF/EPFL peptides demonstrates that different members of the same gene family have been independently selected for their ability to regulate a similar biological function and provides perspective on rice domestication.


Asunto(s)
Oryza , Domesticación , Grano Comestible/genética , Oryza/genética , Desarrollo de la Planta , Proteínas de Plantas/genética
11.
Sci Rep ; 12(1): 5465, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361859

RESUMEN

Dynamic regulation of QTLs remains mysterious. Single segment substitution lines (SSSLs) and conditional QTL mapping and functional QTL mappings are ideal materials and methods to explore dynamics of QTLs for complex traits. This paper analyzed the dynamics of QTLs on plant height with SSSLs in rice. Five SSSLs were verified with plant height QTLs first. All five QTLs had significant positive effects at one or more developmental stages except QTL1. They interacted each other, with negative effects before 49 d after transplanting and positive effects since then. The five QTLs selectively expressed in specific periods, mainly in the periods from 35 to 42 d and from 49 to 56 d after transplanting. Expressions of epistasis were dispersedly in various periods, negative effects appearing mainly before 35 d. The five QTLs brought the inflexion point ahead of schedule, accelerated growth and degradation, and changed the peak plant height, while their interactions had the opposite effects. The information will be helpful to understand the genetic mechanism for developmental traits.


Asunto(s)
Oryza , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Oryza/genética , Fenotipo , Sitios de Carácter Cuantitativo
12.
J Genet Genomics ; 49(5): 405-413, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35151907

RESUMEN

Grain size is an important determinant of grain weight and yield in rice. Although several genes related to grain size have been identified, natural variations in these genes that affect grain size are poorly characterized. Here, we describe the grain length QTL GL10, encoding MADS56, which positively regulates grain length and grain weight. A natural allelic variation of NIL-gl10, containing an ∼1.0-kb deletion in the first exon that abolishes its transcription, results in shorter grain length, lower grain weight and delayed flowering in gl10 plants. The knockout of GL10 in the HJX74 background leads to grain phenotypes similar to that of NIL-gl10, while overexpression of GL10 results in increased grain length and weight and earlier heading date. GL10 regulates grain length by promoting greater longitudinal cell growth in the grain glume. Additionally, GL10 participates in the regulation of gibberellic acid (GA) signaling pathway genes in young panicle tissues. Analysis of GL10 haplotypes shows obvious divergence between the japonica and indica lineages. Our findings reveal an allelic variation of GL10 that may explain differences in grain length among modern cultivars and could be used to breed rice varieties with optimized grain shape.


Asunto(s)
Oryza , Alelos , Grano Comestible/genética , Oryza/genética , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo/genética
13.
Rice (N Y) ; 14(1): 85, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34601659

RESUMEN

Rice varieties are required to have high yield and good grain quality. Grain chalkiness and grain shape are two important traits of rice grain quality. Low chalkiness slender grains are preferred by most rice consumers. Here, we dissected two closely linked quantitative trait loci (QTLs) controlling grain chalkiness and grain shape on rice chromosome 8 by substitution mapping. Two closely linked QTLs controlling grain chalkiness and grain shape were identified using single-segment substitution lines (SSSLs). The two QTLs were then dissected on rice chromosome 8 by secondary substitution mapping. qPGC8.1 was located in an interval of 1382.6 kb and qPGC8.2 was mapped in a 2057.1 kb region. The maximum distance of the two QTLs was 4.37 Mb and the space distance of two QTL intervals was 0.72 Mb. qPGC8.1 controlled grain chalkiness and grain width. qPGC8.2 was responsible for grain chalkiness, grain length and width. The additive effects of qPGC8.1 and qPGC8.2 on grain chalkiness were not affected by higher temperature. Two closely linked QTLs qPGC8.1 and qPGC8.2 were dissected on rice chromosome 8. They controlled the phenotypes of grain chalkiness and grain shape. The two QTLs were insensitive to higher temperature.

14.
Theor Appl Genet ; 134(12): 3941-3950, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34420062

RESUMEN

KEY MESSAGE: A quantitative trait locus GW10 is located on Chromosome 10 by map-based cloning, which encodes a P450 Subfamily protein. The GW10 regulates grain size and grain number in rice involved in the BR pathway. Grain size and grain number play extremely important roles in rice grain yield. Here, we identify GW10, which encodes a P450 subfamily protein and controls grain size and grain number by using Lemont (tropical japonica) as donor parent and HJX74 (indica) as recipient parent. The GW10 locus was mapped into a 14.6 kb region in HJX74 genomic on the long arm of chromosome 10. Lower expression of the gw10 in panicle is contributed to the shorter and narrower rice grain, and the increased number of grains per panicle. In contrast, overexpression of GW10 is contributed to longer and wider rice grain. Furthermore, the higher expression levels of some of the brassinosteroid (BR) biosynthesis and response genes are associated with the NIL-GW10. The sensitivity of the leaf angle to exogenous BR in NIL-GW10 is lower than that in NIL-gw10 and in the KO-GW10, which implied that the GW10 should involve in the brassinosteroid-mediated regulation of rice grain size and grain number.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Oryza/genética , Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Mapeo Cromosómico , Cruzamientos Genéticos , Grano Comestible/genética , Genes de Plantas , Oryza/crecimiento & desarrollo
15.
Rice (N Y) ; 14(1): 33, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33792792

RESUMEN

BACKGROUND: Grain chalkiness is one of important factors affected rice grain quality. It is known that chalkiness is affected by the high temperature during the seed filling period. Although a larger of QTLs for chalkiness were reported across all 12 chromosomes, only a few of the QTLs were fine mapped or cloned up to now. Here, we fine map two QTLs for chalkiness in two single-segment substitution lines (SSSLs), 11-09 with substitution segment from O. sativa and HP67-11 with substitution segment from O. glaberrima. RESULTS: The grain chalkiness of SSSLs 11-09 and HP67-11 was significantly lower than that in the recipient Huajingxian 74 (HJX74) in consecutive 8 cropping seasons. The regression correlation analysis showed that percentage of chalky grain (PCG) and percentage of chalky area (PCA) were significantly and positively correlated with percentage of grain chalkiness (PGC). Two QTLs for grain chalkiness were located on two chromosomes by substitution mapping. qPGC9 was mapped on chromosome 9 with an estimated interval of 345.6 kb. qPGC11 was located on chromosome 11 and delimited to a 432.1 kb interval in the O. sativa genome and a 332.9 kb interval in the O. glaberrima genome. qPGC11 is a QTL for grain chalkiness from O. glaberrima and was mapped in a new region of chromosome 11. The effect of two QTLs was incomplete dominance. The additive effects of two QTLs on chalkiness in second cropping season (SCS) were significantly greater than that in first cropping season (FCS). CONCLUSIONS: qPGC11 is a new QTL for grain chalkiness. The two QTLs were fine mapped. The donor alleles of qPGC9 and qPGC11 were sensitive to the high temperature of FCS.

16.
Plant Cell ; 33(4): 1212-1228, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33693937

RESUMEN

Panicle size and grain number are important agronomic traits and influence grain yield in rice (Oryza sativa), but the molecular and genetic mechanisms underlying panicle size and grain number control remain largely unknown in crops. Here we report that LARGE2 encodes a HECT-domain E3 ubiquitin ligase OsUPL2 and regulates panicle size and grain number in rice. The loss of function large2 mutants produce large panicles with increased grain number, wide grains and leaves, and thick culms. LARGE2 regulates panicle size and grain number by repressing meristematic activity. LARGE2 is highly expressed in young panicles and grains. Biochemical analyses show that LARGE2 physically associates with ABERRANT PANICLE ORGANIZATION1 (APO1) and APO2, two positive regulators of panicle size and grain number, and modulates their stabilities. Genetic analyses support that LARGE2 functions with APO1 and APO2 in a common pathway to regulate panicle size and grain number. These findings reveal a novel genetic and molecular mechanism of the LARGE2-APO1/APO2 module-mediated control of panicle size and grain number in rice, suggesting that this module is a promising target for improving panicle size and grain number in crops.


Asunto(s)
Oryza/fisiología , Proteínas de Plantas/genética , Semillas/genética , Ubiquitina-Proteína Ligasas/genética , Clonación Molecular , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Mutación , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/metabolismo
17.
Nat Commun ; 11(1): 1846, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32296056

RESUMEN

Seed size is a key agronomic trait that greatly determines plant yield. Elucidating the molecular mechanism underlying seed size regulation is also an important question in developmental biology. Here, we show that the KIX-PPD-MYC-GIF1 pathway plays a crucial role in seed size control in Arabidopsis thaliana. Disruption of KIX8/9 and PPD1/2 causes large seeds due to increased cell proliferation and cell elongation in the integuments. KIX8/9 and PPD1/2 interact with transcription factors MYC3/4 to form the KIX-PPD-MYC complex in Arabidopsis. The KIX-PPD-MYC complex associates with the typical G-box sequence in the promoter of GRF-INTERACTING FACTOR 1 (GIF1), which promotes seed growth, and represses its expression. Genetic analyses support that KIX8/9, PPD1/2, MYC3/4, and GIF1 function in a common pathway to control seed size. Thus, our results reveal a genetic and molecular mechanism by which the transcription factors MYC3/4 recruit KIX8/9 and PPD1/2 to the promoter of GIF1 and repress its expression, thereby determining seed size in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
18.
Front Immunol ; 11: 583, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296446

RESUMEN

C-reactive protein (CRP) is an acute phase reactant secreted by hepatocytes as a pentamer. The structure formation of pentameric CRP has been demonstrated to proceed in a stepwise manner in live cells. Here, we further dissect the sequence determinants that underlie the key steps in cellular folding and assembly of CRP. The initial folding of CRP subunits depends on a leading sequence with a conserved dipeptide that licenses the formation of the hydrophobic core. This drives the bonding of the intra-subunit disulfide requiring a favorable niche largely conferred by a single residue within the C-terminal helix. A conserved salt bridge then mediates the assembly of folded subunits into pentamer. The pentameric assembly harbors a pronounced plasticity in inter-subunit interactions, which may form the basis for a reversible activation of CRP in inflammation. These results provide insights into how sequence constraints are evolved to dictate structure and function of CRP.


Asunto(s)
Proteína C-Reactiva/química , Proteína C-Reactiva/metabolismo , Humanos , Conformación Proteica , Pliegue de Proteína
19.
Plant Cell ; 31(8): 1899-1912, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31175173

RESUMEN

Endoreduplication, the replication of the nuclear genome in the absence of mitosis, is often associated with cell growth and differentiation in plants and animals, but the molecular mechanisms underlying endoreduplication in plants have not been fully elucidated. Here, we show that the Mediator complex subunit MED16 acts as a negative regulator of endoreduplication to influence cell growth in Arabidopsis (Arabidopsis thaliana). The med16 mutant exhibits larger and more numerous cells than the wild type, resulting in enlarged organs. The large cells in med16 are associated with high DNA ploidy levels. MED16 associates with the promoters of the Anaphase Promoting Complex/Cyclosome activators CELL CYCLE SWITCH52 A1 (CCS52A1) and CCS52A2 (encoding important factors for endoreduplication and cell growth) and represses their expression. MED16 interacts physically with the transcriptional repressor DEL1 to repress the expression of CCS52A2 Genetic analysis suggested that MED16 is partially dependent on CCS52A1/A2 to control endoreduplication and cell growth. Our results indicate that the transcriptional repression of CCS52A1/A2 by MED16 regulates endoreduplication and cell growth in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejo Mediador/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica de las Plantas , Complejo Mediador/genética , Ploidias , Transactivadores/genética , Transactivadores/metabolismo
20.
Nat Commun ; 9(1): 1522, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670153

RESUMEN

Sugars function as signal molecules to regulate growth, development, and gene expression in plants, yeasts, and animals. A coordination of sugar availability with phytohormone signals is crucial for plant growth and development. The molecular link between sugar availability and hormone-dependent plant growth are largely unknown. Here we report that BRI1 and BAK1 are involved in sugar-responsive growth and development. Glucose influences the physical interactions and phosphorylations of BRI1 and BAK1 in a concentration-dependent manner. BRI1 and BAK1 physically interact with G proteins that are essential for mediating sugar signaling. Biochemical data show that BRI1 can phosphorylate G protein ß subunit and γ subunits, and BAK1 can phosphorylate G protein γ subunits. Genetic analyses suggest that BRI1 and BAK1 function in a common pathway with G-protein subunits to regulate sugar responses. Thus, our findings reveal an important genetic and molecular mechanism by which BR receptors associate with G proteins to regulate sugar-responsive growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al GTP/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Membrana Celular/metabolismo , Medios de Cultivo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Glucosa/química , Microscopía Confocal , Microscopía Fluorescente , Mutación , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Unión Proteica , Semillas/metabolismo , Transducción de Señal , Azúcares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...